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Abstract

In papersI and II we have presentedthe resultsof the most updated 1-point closure

model for the turbulent vertical diffusivities of momentum,heat and salt.,Km,h,s. In this

paper, In this paper, we derive the analytic expressionsfor Kin,h,s using a new 2-point

closuremodel that has recently beendevelopedand successfullytested against some~80

turbulence statistics for different flows. The new model has no free parameters. The

expressions for Km,h, s are analytical fuactions of two stability parameters: the Turner

number R (salinity gradient/temperature gradient) and the Richardson number Ri
P

(temperature gradient/shear). The turbulent kinetic energy K and its rate of dissipation

may be taken local or non-local (K-c model).

Contrary to all previous models that to describe turbulent mixing below the mixed

layer (ML) have adopted three adjustable "background diffusivities" for momentum, heat

and salt, we propose a model that avoids such adjustable diffusivities. We assume that

below the ML, Km,h, S have the same functional dependence on Ri and Rp derived from the

turbulence model. However, in order to compute Ri below the ML, we use data of vertical

shear due to wave-breaking measured by Gargett et al. (1981). The procedure frees the

modeI from adjustable background diffusivities and indeed we use the same model

throughout the entire vertical extent of the ocean.

Using the new Km,h,s, we run an O-GCM and present a variety of results that we

compare with Levitus and the KPP model.

Since the traditional 1-point (used in papers I and II) and the new 2-point closure

models used here represent different modeling philosophies and procedures, testing them in

an O-GCM is indispensable. The basic motivation is to show that the new 2-point closure

model gives results that are overall superior to the 1-point closure in spite of the fact that

the latter rely on several adjustable parameters while the new 2-point closure has none.

After the extensive comparisons presented in papers ! and II, we conclude that the

new model presented here is overall superior for it not only is parameter free but also



becauseis part of a more generalturbulence model that has been previously successfully

testedon a wide variety of other typesof turbulent flows.



l.lntroduction

a) O-GCM dynamic equations. Turbulent Diffasivities

The dynamic equations for the large scale mean velocity, temperature and salinity,

U i, T and S, are given by (Semtner; 1995; Semtner and Chervin, 1992; Anderson and

Willebrand, 1992)

_tUi + _jri j = _ "0xi0P+ .... (la)

DT 0 h 0 Off' (lb)
]:it + _xi i = _x!_-i). + '

DS 0 s 0 /_0S _ (lc)
]_t + _x i i = _x I 0_ i) + "'"

where D/Dt=O/Ot+Uj0/0xj, )_ and ,; are the temperature and salt kinematic diffusivities.

Eqs.(la-c) depend on turbulence via the the Reynolds stresses rij=uiu j and the heat and

salt fluxes hi=u---0i, si=uia , where ui, 0 and a represent the turbulent (fluctuating)

components of the velocity, temperature and salinity fields. The dots represent external

forces, rotation, etc. The vertical turbulent diffusivities Km,h, s (cm2s -1) enter via the

relations:

K OT K0S-K ou w--0=- _=- (ld)
uw = m07' h07' s-0z

Historically, a value of Kh=l was suggested by Munk (1966). Bryan (1991) and Colin de

Verdiere (1988) later showed that the polar heat transport scales like Kh/3- and that in

order to reproduce its observed value (~lPetawatt), O-GCM require Kh~2 (Holland, 1989;

Mellor, 1989; Cummings et., 1990). Chen et al. (1994) concluded that an improved mixed

layer ameliorates the large scale equatorial circulation as well as the annual cycles of the

SST (sea surface temperatures) while on a global scale McWilliams (1996) has recently

stressed that O-GCMs are sensitive, among other things, to the vertical diffusivities. From

high resolution profiles and tracer experiments (Mourn 1989; Gargett, 1989; Ledwell et al.

1993; McPhee and Martison 1994; Toole et al. 1994; Polzin et al. 1997), it was concluded

that in the ocean mixed layer K h can be as large as (1-2)102, while in the thermocline



Kh~(0.11---0.6) with perhapsthe tendencyto vary as N-1, where N is the Brunt-Vaisala

frequency(Gargett and Holloway 1984;Gargett et al., 1989;Gargett 1984, 1993; Matear

and Wong, 1997).Thus, diffusivities are not constant with depth and different processes

contributeto the K's at different depthsresulting in different values.

b) general constraints on the K's

Since the dimensions of the diffusivities are (length)2(time) -1, to ct, nstruct the

diffusivities K's one needs two independent variables. Over the years, three expressions

have been adopted:

1) Richardson law:

2) Prandtl law:

3) Turbulence modeling:

Diffusivity ~ _¢4/3_ 1/3 (le)

Diffusivity ~ Kkf (if)

K 2
Diffusivity ~ -?- (lg)

where f is a typical length scale, K is the turbulent kinetic energy and ( is the rate of

dissipation of K. Richardson law (a precursor of Kolmogorov law) emphasizes the diffusive

nature of large eddies while Prandtl law is reminiscent of kinetic theory of gases and mean

free path arguments. Both expressions entail a length scale f which is usually difficult to

quantify, especially in the case of stable stratification (Cheng and Canuto, 1994), whereas

(lg) depends on K and e for which we shall derive two differential equations thus avoiding

the need of an f. On that basis alone, (lg) is preferable to both (le--f). Even so, (lg) is still

not satisfactory. In fact, consider the case of stable stratification when shear is the source of

turbulence. In the absence of salt, the turbulent Prandtl number,

K
m

aT=i_ h (lh)

is known to increase with stratification represented by the Richardson number Ri,

aT = aT(Ri) ' _r'l_idaT(Ri)>0 (li)

(Webster, 1964; Istweire and Helland, 1989; Schumann, 1991; Wang et al., 1996). If we

limit the functional dependence of the K's to the forms (le-g), we obtain aT=constant



which violates the second of (li). For example, the model of Pacanoswki and Philander

does not satisfy (li) since it yields a constant a T. The recent model for Km, h of D'Alessio

et al. (1998) does not satisfy (li) either. In addition, the function Sm must satisfy the well

known asymptotic limits of Ri-_0 (shear driven flows)

Ri+0: 2Sm_0.1 (l j)

as studies of shear flow indicate (Launder et al., 1975).

Finally, the model must provide a correct value of the critical Richardson numbe:

Ricr above which turbulence can no longer be sustained by shear. While linear stability

analysis implies that turbulence exists only for

Ri< Ricr , Ricr = 1/4 (lk)

even early, laboratory data by Taylor (cited in Monin and Yaglom, 1971, Vol.I, pages

502-503) show that considerable turbulent exchange exists up to Ri~10. More recently,,

Martin (1985), Smart (1988) and Kundu et al. (1991) have found considerable mixing in

the ocean up to Ri~l, a result also validated by the LES results of Wang et al. (1996). This

means that a model for stably stratified turbulence must allow turbulence past Ricr=l/4.

The original MY model (Mellor and Yamada, 1982) does not satisfy this criterion since it

yields Ricr=0.19 nor do any of the subsequent models that have not significantly improved

the physical content of the MY model. This brief discussion about aT(Ri ) and Ricr suffices

to show that there are some basic data that any model must satisfy before being considered

a candidate for ocean turbulence.

The general functional form of the turbulent diffusivities for momentum, heat and salt

Kin,h, s are of the form:

K 2

Km,h,s = 2 T Sm,h,s (2a)

where K and e are the turbulent kinetic energy and its rate of dissipation which in principle

are given by two dynamic equations (the K-e model). The dimensionless structure

functions Sm,h, s must differ from one another so that'



In generalwecanwrite:

KmCKhCKs (2b)

Sin,h,s = Sm,h,s(VU,O_TVT , _sVS) (2c)

where O_T and a s are the volume expansion coefficients oT=-p-lOp/OT and O_s=p-lOp/OS and

where the shear VU can be generated either by external sources like in the mixed layer ML

or by internal wave-breaking processes below the ML. If one introduces the Turner number

R and the Richardson number Ri:
P

0S a 8I' -1 _ 2
= , Nh/N uRp gas0-_ (g T0-[ ) Ri =

where

OT N2
i_ -- g T'_-' u = 2(Cij2ij)

N2= __g__ gT OL/_
N_(1-Rp)= g%_- - g s_ =paz

(2d)

(2e)

17f

Ri>0

R >1 Unstable, N_<0
P

(3a)

(3b)

(3c)

distinguish the following four cases:

SF (salt fingers, salty-warm over fresh-cold):

_z>0,

Rp>0,

R <1 Stable, N2>0,
P

DC (diffusive convection, fresh- cold over salty-warm):

0S< _z<0 '_-/0,

Rp >0, Ri<0

Rp<l Unstable, N2<0, Rp>l Stable, N2>0

DS (doubly stable, fresh-warm over salty-cold)

 z<0,
Rp<0, Ri>0, N2>0, Stable

we can rewrite (2c) more concisely as

Sm,h,s = Sm,h,s(Rp, Ri) (2f)

(Clearly, we could have also defined Ri in terms of N _ rather than just the thermal

gradient. We have chosen the latter for reasons of presentation of the results). One must



DU (doubly unstable, salty-cold over fresh-warm):

_z >0,

Rp<0, Ri<0,

The stability/instability is predicated on

(stable) and N2<0 (unstable).

_z <0,

N2<0, Unstable

the Brunt-Vaisala frequency N

(3d)

with N2>0

The general problem is to construct (2f) so as to encompass all .four cases (3a-d).

First, there is ample evidence from laboratory and oceanic field data that show that K h is

different from K s. In the SF case, the ratio Ks/Kh>l (Hamilton et al., 1989) while in the

DC case, Kh/Ks>I (Kelley, 1984). Schmitt (1981) has also shown that the observed T-S

relationship is not consistent with Kh--K s. For a discussion and review of the importance

of these processes and their extent in different parts of the ocean, see Turner (1967, 1973,

1985), Schmitt (1994) and Zhang et al. (1998). In spite of this evidence, almost all O-GCM

still assume

Ks=K h (3e)

Recently, attempts have been made to overcome (3e) but the task is not easy. The main

difficulty is that in the absence of a model capable of encompassing all four cases, SF, DC.

D$ and DU, the only alternative is to employ laboratory and ocean data to build the

functional form of the diffusivities to be used in an O-GCM. This is the approach

employed by Large et al. (1994), Zhang et al. (1998, ZSH) and Merryfield et al. (1999,

MHG) who used relations by Schmitt (1981) and Kelley (1984, 1990), among others.

There is, however, an internal limitation to such a procedure since the available data

refer to SF and DC but not to DS and DU which are also important (Duffy and Caldera,

1999). Thus, away from the regions where SF and DC are active, the above authors take

Km,h,s(DS, DU) =0 (3f)

or, more precisely, they use a background diffusivity which is chosen primarily on grounds

of numerical stability but whose physical origin must be an internal-wave breaking

phenomenon. This is clearly not a satisfactory situation especially in view of the fact that



Sincethe studies by ZHS and MHG have shown the importance of double diffusion_ the

aboveprocedureis certainly better than (3e)but still not fully satisfactory. The goalof this

paperis to considerthe sameproblembut with a different methodology.

We developa turbulence model to compute the three diffusivities .for momentum, heat

and salt to encompass the four processes SF, DC, DS and DU in the presence of an

arbitrary shear. The inclusion of shear is quite relevant since is known to hamper the SF

mechanism (Linden, 1971, 1974a, b; Kunze, 1990) and yet, the above procedures do not

account for shear since they expressed K h and K s in terms of only one stability parameter

Rp, rather than Rp and the Richardson number Ri.

The model comes in three forms: 1) K and c are solutions of two dynamical equations,

the so called K-c model whose main but not unique advantage is to avoid the introduction

of any mixing length, 2) only one of them satisfies a differential equation while the other is

taken to be the local limit of its dynamic equation and 3) both K and ( are taken as the

local limit of their respective dynamic equations. As we shall show, in model 3) all the

relations are algebraic and one must solve a cubic equation. All the numerical results

correspond to case 3).

c) How to compute the diffusivities K's

Since from the first O-GCM it clearly emerged that several key ocean features, e.g.,

polar heat transport, meridian circulation, T-S relationship (temperature-salinity), etc.,

depend sensitively on the vertical turbulent diffusivities of momentum K m, heat K h and

salt K s (F.O. Bryan, 1987; K.Bryan, 1991) even though until recently all codes employed

the approximation Ks=K h. The need to reliably compute such diffusivities has been dealt

in the past with three quite distinct approaches.

d) descriptive-diagnostic method

One can adopt a descriptive-diagnostic approach whereby the O-GCM are used to



showthat in order to obtain overall agreementwith the data, the diffusivities K's must lie

in a restricted range of values. Such a diagnostic, a posteriori approach is however

inadequatein climate studieswherethe predictive powerof the model is the key feature on

which the reliability of the model resultsis predicated.

e) turbulence models. These models are based on the Navier-Stokes equations and thus, at

least in principle, have a built-in degree of generality, resiliency and predictive power. In

particular, one-point closure turbulence models have the longest tradition (Chou, 1940,

1945) and, naturally, they were the first tools used to construct the turbulence variables

needed in O-GCM. The pioneering work in this field is that of Mellor and Yamada (1982,

MY: Mellor, 1989) who applied the 1980 state-of-the-art turbulence modeling to

geophysical problems. However, almost 20 years later, most of the work in ocean turbulence

still employs essentially the same 1980 state of the art turbulence modeling (Rosati and

Miyakoda I988; Gaiperin et a1.1989; Gaspar et al. 1990; Blanke and Delecluse 1992; Baum

and Caponi, 1992; Ma et al. 1994; Kantha and Clayson 1994; Burchard and Baumert 1995;

D'Alessio et al., 1998). This means that the basic difficulties that plagued the original MY

model are still present. They can be identified with the closure of the pressure correlations

terms, and the need to express the non-local third order moments (TOM) in terms of lower

order moments. The pressure-correlations bring about adjustable constants which the

model is unable to predict and the TOM are treated with the down gradient approximation

which Moeng and Wyngaard (1989) have convincingly shown to be seriously inadequate

(see paper I for details).

f) Non-turbulence models. On the grounds that the above uncertainties have not been

satisfactorily resolved, Large et al. (1994) have suggested an alternative model (called

KPP), not based on any turbulence model.

10



g) New turbulence models. It is generally agreed that, potentially, turbulence models have

far greater generality, resiliency and predictability power that any ad-hoc-model. In

papers 1 and II, we offered the most updated 1-point closure models that one can construct

today. Here, we offer a new 2-point closure model that has been assessed over some ~80m

turbulent statistics pertaining to large variety of flows. We derive the expressions for K m,

K h and K s and run the O-GCM with the new K's. The new model has no adjustable

pa, ameters.

II. New turbulence model

The turbulence model to be employed here (Canuto et al., 1996-1999, cited as CD)

was tested on about 100 turbulent statistics belonging to a wide variety of flows: pure shear

flows, Rayleigh-Benard convection, rotating turbulence, 2D turbulence, rotating

convection, freely decaying turbulence, stably stratified turbulence, etc. In all cases, the

model reproduces the data quite accurately and thus the model can be considered

validated. In addition, the model has no adjustable parameters. Since this is the first

application of this new turbulence model to ocean turbulence, it is necessary to begin by

presenting the physical foundations of the model.

Recent advances in phenomena related to turbulence (e.g., critical phenomena) have

provided us with new tools and new perspectives on how to tackle the problem of

turbulence. Like in many other fields, one begins with the case of homogeneous-isotropic

turbulence for which an exact solution of the NSE found by Wyld (1961). The solution for

the energy spectrum E(k) can be shown to be equivalent to the solution of a stochastic

Langevin-type dynamic equation for the turbulent velocity fields u(k) of the form

_t0ui (k) = i_ixt(k ) + f_(k) - Ud(k)k2ui(k ) (4a)

where E(k),_k_u(k)u(k). Eq.(4a) has an appealing physical interpretation: external forces

are represented by the first term whose specific form is obtained from the NSE for arbitrary

flows (shear, convection, rotation, etc). The second term is a random turbulent force

11



representingthe action of the largeeddieson a giveneddy k evenwhen the external forces

are no longeroperative (for example in the Kolmogorov region) and finally, the last term

representsthe dynamical viscosity felt by an eddy k due to all smaller eddies. Though

derived for homogeneousand isotropic turbulence, Eq.(4a) seemsto capture the main

ingredients that oneneedsto build the canonicalpicture of a supply, transfer and enhanced

dissipation of energy that is at the base of Kolmogorov original picture of turbulent

dynamics.The _:hallengeis to give an explicit expressionto all the terms and prove that in

spite of its "idealized" origin, Eq.(4a) is valid quite in generaland capableof reproducing

real flows. It must bestressedthat we arenot the first to suggesta Langevin-type equation

as a starting point to describeturbulence. Severalpreviousmodels were in fact recast in

terms of a Langevin-type equationsbut, to the best of our knowledge, this is the first case

in which Eq.(4a) has been shown to be a viable, successful, operational tool to treat real

turbulent flows. To construct the explicit form of the dynamical viscosity, CD first

generalized the well developed and well tested renormalization group method (RNG) to

derive the following expression for Vd(k )

Ud(k ) = ,t(k) + _,= (_ + /' E(p)p-2dp) 2 (4b)
k

where u is the kinematic viscosity and ut(k ) is the so-called turbulent viscosity. This

expression tells two things: first, the integration from k to = means that Ud(k ) is

contributed by all eddies smaller than k, as indeed expected on physical grounds and that

while the Langevin equation is linear in the velocity fields, its "coefficients" like Ud(k ) are

non linear since they depend on E(k). Thus, while in the NSE the coefficients are numbers

and the velocity fields enter non-linearly (giving rise to closure problems), in the Langevin

equation the situation is reversed. This a key point that allows us to derive a closed system

of equations for the second--order moments like Reynolds stresses, etc. Next, we consider

the first term in (4a). It represents the external forces driving turbulence, is a linear

function of the turbulent fields and its form can be derived directly from the NSE. In the

12



presentpaper we consider the turbulent fields of velocity, temperature and salinity' ui, 0

and a in which case fext is the sum of three terms

_xt= f.u + f.O + f.a (4c)
1 1 1 1

where

u= ± k k;U, m[_t_ (4d)fi - Ui,juj( ) + ui (k)]±
J J' m

ff = - awPij(k) gj0(k) (4e)

f_i = asPij(k) gja(k) (4f)

Here, Ui, j is the mean velocity gradient, and the a's are the expansion coefficients (T and

Sa are mean temperature and salinity)

aT =_ p-l_l_ ' as = p-@_ (4g)
a

which must be computed using the equation of state for seawater. The superscript ± in (4d)

means that only transverse components are allowed, that is, for any tensor A,

A+. = Pit_k)AimPmj(k) (4h)lj

where Pij=gij-kikjk-2 is the projection operator. Analogously, for the 0 and a fields, we

have the Langevin equations:

_t0(k,t) = f_(k,t)- )Cd(k,t)k_0(k,t) + f_(k,t) (5a)

0 a(k,t)= fta(k,t ) -_d(k,t)k2a(k,t) + fSa(k,t) (Sb)_t

with

Xd(k ) = ;_ + xt(k), _d(k) = _ + _;t(k) (6)

where X and _ are the heat and salt kinematic diffusivities. The stirring forces are:

f_9(k,t) = - flfui(k), fta(k,t ) = - flaui(k ) (7a,b)

where the 3's are the gradients of the mean temperature T and the mean salinity Sa,

fir- _'xi'0T afli = _:x? (7c)

As Eqs.(la---c) show, what one needs in practice the Reynolds stress rij which are the

integral over all wavenumbers k of the two-point Reynolds stresses

Rij(k)5(k+k, ) = <ui(k,t)uj(k',t)> s (8a)

13



7"..

1j

where s means symmetrization with respect to k and k' and i,j.

second-order moments are the temperature and salinity fluxes:

j_(k)5(k+k') = <ui(k,t)O(k',t)>s

J_r(k)_k+k') = <ui(k't)a(k"t)>s

(Sb)

The other required

(%)

(9b)

As it will be shown, these variables entail other turbulence variables, and precisely, the

variances of both the temperature and sat fields,

e0(k)5(k+k' ) = ¢<0(k)0(k')>

ea(k)5(k+k' ) = ¢<a(k)a(k')>=

as well as the temperature-salinity correlation

e0a(k)3(k+k') = <0(k)a(k')>

The spectra of energy, temperature and salt fields E(k),

(10a)

(10b)

E0,c(k) are

(10c)

obtained by

integrating over the directions of the vector k (times a factor k 2) the density functions in

the left hand sides of Eqs.(8)-(10), namely:

E(k) = }k2fRii(k)dnk

E0,c(k) = k2fe0,a(k)dnk

(11a)

(11b)

The dynamic equations for the second-order moments (8)-(10) are derived by multiplying

the stochastic dynamic equations (4a) and (5a,b) by ui(k' ), 0(k') and a(k') and then

averaging. The key difficulty is represented by the correlation of the first terms in (4a) and

(5a,b) with the turbulent fields which physically represent the work performed by the

turbulent forces ft(k). To compute these terms, we adopted two assumptions which are in

agreement with the general understanding of turbulent processes: 1) energy generated at

the largest scales is transferred locally to high k regions in a manner analogous to the flow

of gas in a pipe, a model that applies to temperature and salinity as well, 2) as turbulent

energy is transferred to smaller scales, the correlation functions of different fields, as well as

correlation functions between different components of the velocity fields, decreases with

increasing k even faster than the energy spectrum itself. The first assumption leads to a

14



representationof the energyflux II(k) of the form:

H(k) = r(k)E(k) (12)

wherer(k) is the rapidity with which energy is propagatedamongdifferent eddies.Eq.(12)

canbeviewedas the analogof j=pv with _II(k), _E(k) and wr(k). The energyflux H(k)

is related to the energytransfer function T(k) by:

T(k) =- gkn(k), fT(k)dk=0 (13a)

T(k) = - r(k) _kE(k) -[_kr(k)]E(k) (13b)

On the other hand, the function T(k) can be obtained by multiplying (4a) by ui(k' ) and

separating the work of the non-linear interactions entering the first two terms in (4a),

(14)T(k) = At(k)- 2ut(k ) k2E(k)

where the work of the force ft is defined by

At(k ) = k2fdn k

Comparing (13b) and (14), we obtain:

dk'<ui(k',t)f_(k,t)>

½r(k) = ]out(p)p2dpAt(k ) = _ r(k)_kE(k),

(15)

(16)

For the fields 0 and a, assumption 1) leads to relations analogous to Eqs.(15)-(16), namely:

<O(k')f_(k)> s = (47rk2)-lA0_(k+k')

< a(k')fta (k)>s = (4_k2)-lAaO(k+k')

where the expressions for the functions A0,a(k) are analogous to Eq.(16), namely,

A O,a(k) = - r 0,a(k)_kE O,a(k)

k

kr0(k ) = ]o)_t(p)p2dp

k

½ra(k ) = /'olCt(p)p2dp

The functions Xd,n d satisfy the differential equation (F stands for Xd and/or nd)

dF _ 10 Vd(Ud+F).l
-

In the present paper, we shall be mostly interested in situations where

Ud>U, 1:d>X, _d >n

17)

18)

19)

(20)

(21)

(22)

(23)

and thus it follows from Eq.(22) that

15



(Xd, nd) = ailud(k )

where the turbulent Prandtl number at=0.72 and Ud(k ) is given

assumption 2) above, it leads to the following relations:

(24)

by Eq.(4b). As for

<f_(k,t)uj(k',t)> = -(87rk2)-lAt(k)Pij(k)5(k+k' )

<ui(k')O(k')f_,a(k)> = 0

<O(k')f[ (k)> = 0
_0"

<a(k')f_,0(k)> = 0 (25a)

Finally, the dynamic equations for E(k) is:

_tE(k) = Aext(k ) + At(k ) -2k2ud(k)E(k ) (25b)

The information we have derived concerning the terms in the basic equations (4a) and

(5a,b) is sufficient to allow us to derive a closed system of equations for the second-order

moments (8)-(10).

III. Dynamic Equations for the Second--Order Moments

Multiplying the stochastic equations (4a) and (5a,b) by the fields ui, 0 and a, it is

straightforward to derive the following dynamic equations for the second-order correlation

functions:

_Rij(k) = (87rk2)-lAt(k)Pij(k) -[S_'mRmj(k)]s -

2.

- _[V ±, R(k)lij + _ [DR(k)]ij - k2ud(k)Rij(k )

- +osfg J; / /ls (26)

_ 0 .0, k, _ S± .0, k, a. .0,_tJi t )= imJm t )-VimJm(k)+ [I)jO(k)]_ -

- k2lud(k)+ Xd(k)lj f(k) - _m0Rim(k)

[-2a],e0(k) + aseao(k)]gjPij(k) (27)

0 e tk' = (4rk2)"A0(k) - ]_jf(k)- 2k2Xd(k)e0(k)_tO_ J

0 k _ja(k) _rj f(k)-oteoa( ) = _ _ _ 2k2[Xd(k)+_d(k)]eoa(k)

(28)

(29)

16



In addition there are two equationswhich canbe obtainedfrom Eqs.(27) and (28) with the

substitutions:

ji0_j_r, 3_fl_, o_T._-as, eo.-,ea, A0_Aa, Xd-_ d (30)

In Eqs.(26)-(27) we have introduced the tensors

- ' U (31)Ui,j=Sij+Vij' 2Sij=Ui,j+Wj,i' 2Vij-Ui,j- j,i

where Sij and Vij are the mean shear and vorticity and D is the operator

V 0 (32)
I) = kj(Sjg+ jg)_kg

Eqs.(26)-(29) must be solved together with the incompressibility condition

k iRij(k)=kjRij(k)=kijF'a=0 (33)

This suggests that one may solve the above equations in spherical coordinates where one

can write (for any j)

j(k) = j¢(k)e¢ + J0(k)e8 (34)

where e¢, 0 are the basic units vectors. Due to condition (33), the only non-zero

components of Rij lie in the plane perpendicular to k so that their number is three and the

general decomposition has the form:

Rij(k ) = e(k)Pij(k ) + a(k)Pij(k ) + b(k)r/ij(k ) (35)

where e(k) is the energy density in k-space while the orthogonal tensors p and r/should be

chosen so as to avoid singularities in the functions a(k) and b(k) which invariably arise

when the tensors p and _/ depend on ¢ as 0_0. This point and the details of the

decomposition are fully discussed in Sec.III of Canuto and Dubovikov (1996b). In the 3D

case, the final equations for the scalar functions e(k), a(k), b(k) etc are quite cumbersome.

Thus, we shall consider only the case of direct physical interest: the mean fields Ui, T, and

salt depend only on the coordinate where there is a non--zero gravity. The final result is:

0 etk _Or t )= (4rk2)lAt(k)- 2k2ud(k)e(k) + M e(k) + Maa(k ) + Mbb(k ) -0

- A_j_(k)- A_(k)+ A_(k)+ A_j_(k) (36)
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with

_a(k) =- 2k2ud(k)a(k) + M a(k) + Mae(k ) + Mabb(k ) -
0

+ {51J_(k ) + ¢52J_(k ) + _3j;(k) + _4j_(k)

6-, A_cos2¢+A_sin2¢,

_=4 A_cos2q>--A;sin2¢

(37a)

(37b)

with

_t(0 b k) =- 2k2q(k)b(k) + Mob(k) + Mbe(k ) - Maba(k ) -

+ 7,j_(k)+ 72j_(k)+ 73J;(k)+ 74J_(k)

7,-= A_sin2O---A_os2¢, 72= -

73= - A;sin20+A_cos2¢, "/'4 =

(38a)

(38b)

0.0
_tJo(k) = -2k2pud(k)j_(k ) +MoJ _ - Sz(1-sin20)j_ - _e(k)-

-2A_eo(k ) + A_eao(k ) + ela(k)+e2b(k)

e = fl_sin2C-fl_cos2¢, e2 = - fi_sin2C-_cos2 ¢

(39a)

(39b)

_)tJ_(k ) = -2k2pud(k)j_(k ) + MoJ_ + Szj_- _e(k)-

- 2A_es(k ) + A;ea#(k ) + r/a(k) + q2b(k)

r/, : flOcos2¢+,_sin2¢ , "2 =-fl_cos2¢+fl_sin2¢

(40a)

(40b)

0 e 'k' (47rk2)-lA0(k) 2k_a{*Ud(k)e0(k )"atO v _=

-4>)-4> (41)

_eoo(k ) = - 2k2a{'qeae(k)- Z_j;(k)-

- 4>)-
We have defined the following variables (z=cosO):

M = _S(1---z2)cos2¢ + D
0

(42)

(43)
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---4S-'IVIa = (l+z) 2 +(1-z)2cos4¢

--4S-1M b = (1-z)2sin4¢

S-1Mab = (1-z)(1-sln2¢) -z

M 8 = - ½Sz2cos2¢ + D, Me= _Scos2¢ + D

2S-'fi = cos2¢ (1-z 2) (k0k---Z0z) + (1---sin2¢)0¢

p = i(l+atl ) =1.2

_,a = _ 2.1(sinC.__cos¢)30,a

_,a l sin¢)_0, a= 2-'z(cos¢ +

A_,a = _ 2-}z(sinC+cos¢)goT, S

A ,a= 2_2(sinC__cos¢)gaT,S

(44a)

(44b)

(44c)

(44d)

Finally, the equations for

j_(k), j_(k), ea(k )

are obtained from Eqs.(40)-(41) via the substitution (30). In the above

equations,

S = (2SijSij) t, N2 = gaT-_z'0T Ri -- _N2 (44f)

S, N and Ri are the mean shear,the Brunt-Vaisala frequency and the Richardson number.

(44e)

and subsequent

IV. Spectra of the Second--Order Moments

The above equations do not contain free parameters and can be solved numerically

once the initial density functions are known. Concrete examples were discussed in Canuto

and Dubovikov (1996c) for different types of shear driven flows for which we can compare

the model results against DNS/LES and laboratory data. The model reproduces such data

quite well. The case of buoyancy driven flows was also studied (Canuto and Dubovikov,

1997a) and in that case too, the model results were in good agreement with a variety of

data. This performance of the model gives us confidence that the extension discussed here is

based on solid foundations. Our final goal is to express the one-point second order
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equationfor e
O"

moments like the Reynolds stresses, the temperature and salinity fluxes in terms of the

gradients of the large scale fields. Since a numerical solution of the above dynamic

equations would not be of practical use, especially if the results are to be used in an

O-GCM, an analytical model is needed which by necessity requires that we make some

approximations. We shall employ the same philosophy that was employed earlier when we

treated shear and buoyancy driven flows. The gist of the method is as follows. In the

inertial ranges, Eqs.(36)-(42) can be solved perturbatively since we have the small

parameters

S(k2ut)-I , gotT_0(k:_xt)-2 , gOs_°'(k2_t)-2 (45)

Once the inertial spectra are obtained, we extrapolate them all the way back to the

infrared cut--off k below which we assume that E(k)=0. Upon integrating the resulting
o

spectra over all k's, we obtain the desired one-point correlation functions. In the case of

shear-driven flows, the results obtained with this method differ less than 15% from those

obtained by numerically solving the full equations (Canuto et al., 1999c). We shall carry

out the procedure without salinity which we shall incorporate in the next paper. To

calculate the spectra, we first need to integrate the k-space densities, Eqs.(8)-(10), over all

directions of k. In turn, the densities are expressed in terms of the variables in Eq.(36)-(42)

as described in detail in Canuto and Dubovikov (1998b). Furthermore, we shall consider

first the stationary case. To the zeroth-order in the smallness parameters (45), the only

non-zero results are the isotropic components of the energy densities g(k), g0(k) and ga(k)

which are obtained by retaining only the first two terms in Eqs.(36) and (41) and in the

which is obtained from (41) and the substitution (30). The results are:

with

4_rk_(k) = E(k)= Koe2/ak -5/3

4_'k_0(k ) = Eo(k ) = Bae0e-l/ak 5/3

47rk_a(k ) = Ea(k ) = BafaCl/ak-_] a

(46)

(47a)

(47b)

Ko = _, Ba =atKo (4S)
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whereBa is the Batchelor constantand the ds represent the rate of dissipation of the total

kinetic and potential energies for the temperature and salinity fields. To compute the first

order terms in the smallness parameters I45), we must consider the first and third terms in

(37a), (38a), the first, fourth and fifth terms in (39a), (40a) and in the corresponding

equation for Ja' whereas in (36) the second and third terms should be taken into account

provided that only the component _=e-_ is retained in the second term since the e--part has

already been used in the zeroth-order. The results of the above procedure, as well as

further intermediate steps, are presented for the simplified case in the absence of salinity,

whereas the final results will include salinity.

Reynolds stress spectrum

R(k) = _IE(k) + Co(k)a + C2]E + Ct(k)t + CA(k))_

where the basis tensors are:

]E = S-2S 2- _I

= g-2gig j- ½I

a = S-1S,

(49a)

t = S-2[V,S], (49b)

The coefficients C's are given by (superscripts indicate the perturbative order at which

they were obtained and _3=30)):

C_r(k) =-2--720 Sel/3k_7/3 (50a)

C3(k) = 0.92(1 - ateOe-l_Tg/3-1)N2Se-1/3k-U/3 (50b)

C (k) = 28 S2k.3 (50c)

C_(k) = -1.08 (1 - a t e0 e-iawgl3-1)N2S2c2/3k -13/a (50d)

C_(k) = - 3.3S2k -3 (50e)

C1(k ) = -1.3N2(1 - 1.44e0e-laTg/7-1)k 3 (50f)

where the Brunt-Vaisala frequency N is: (50g)

N_ 0T (50h)

Heat flux spectrum:

J(k) = Jg(k)g0+ Ju Uo (51a)

go=g'ag, Uo= U-1U (51b)
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J}(k) = 0.93/3(1 - 1.44e0(-'aTg_-')¢a/3k-7/3

10.1N 1 17
Ju (k) = 27 v _L + _ P-a( 1 - l'44eOclaTg 3-1)]Sk-3

(52c)

(52a)

V. One-point Reynolds stresses and temperature flux

The case of the Reynolds stresses in the presence of shear was discussed in detail in

Canuto and Dubovikov (1999c) and we shall not repeat it here. The final result for the

one-point Reynolds stress, arrived at by integrating (49a) over wavenumbers from the

infrared cutoff to infinity, is:

2

rij-- uiu j - _K6ij

7ij = Caa + Ctt + CAA

where the basis tensors were defined in Eqs.(49b). The coefficients C's are •

c m
_ 14 S2ko2amC t -

C A = _ 0.65N2k-2(1 - 1.44c0Clawg_-I )
0

0.72 c 0e-1 aTg3-l) N2_-2/3 k 4/3a m= 1-0.62(1- o

(53a)

(53b)

(54a)

(54b)

(54c)

(54d)

Upon integration of the thermal spectra (51) and (52), we obtain the two components:

We recall that, k
0

Jg = 0.73el/3k-o4/a(1 - 1.44e 0e-l_Tg/3 -1)

= 0.156/3Sko211 + 1.43(1 - 1.44e0e-laTg3-1)]Ju

is obtained via the relations:

(55a)

(55b)

_ e2/3k "2/3K=JkE(k) dk= o
0

ko= (_)3/2eK'3/2

(55c)

(55d)

Some modifications are however required. As stated earlier, the above results correspond to

the stationary case and thus, they imply that production=dissipation, that is,

P=c, P0=c0 (56)

where P and P0 represent the rate production of turbulent kinetic energy and of

temperature variance (that is, potential energy). To introduce the P/c dependence into the
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equations, we must somehowkeep the left hand side of Eq.(36). In carrying out. the

perturbative approach,we obtain the following differential equation for the functions e,a,b

to the first order in the smallness parameter (45):

_tfl(k) = el/3k2/3[_(k) - fl(k)] (57)

where f0 is the first order term representing any of the functions e,a,b in the stationary

limit. The same equation holds true for the first order of the spectrum Ca(k ) . To integrate

(57) over k for the component C_(k), we assume that its form is the same as in the

stationary limit, that is, k -7/3. Then, from (57) we obtain:

CO-C (k)o (SSa)
Following a practice widely used in treating the Reynolds stresses, we shall assume that

Thus, Eq.(58a) gives finally

0 C_(k) = C t_K-'= C K-l(P-c) (585)

Cla(k ) = r C°(k)

F"= 1 + 1(P/c-l)

Proceeding in an analogous fashion, we obtain

(58c)

(58d)

0 p (59a)
Jg= Jg 1

1_ = t + 0.084 [P/e-1 + at'(P0/c0-1)] (595)1

We can continue the analysis of the P/e dependence to the next order of perturbation, as it

was described in detail in Canuto and Dubovikov (1999c). The results will be presented

below but before we must discuss another correction to C _ which is due to the fact that an
a

unmodified extension of the initial expression for the first-order function _ (k) up to k
1 0

results in a violation of the positiveness of the energy density e(k) in the region k <k<k
0 1

where

k 8 xk2/3 x KS (60a)
_=1-5 0 ' =T

Such a violation can be prevented by multiplying the function _ (k) by (k/k1) 2/3 in the
2

region k <k<k. This leads to the following correction factor to C_(k)
0 1
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9 _ 3x_1(1 15 -1_Fc = 5 - ]-6x J

Next, wesubstitute the variablesk
o

for x>15/8

Fc=l , for x<15/8 (60b)

from Eq.(55d) and adopt P0=e0 to obtain

e0=/3Jg (60c)

Substituting (55a), we obtain a linear equation in e0/e whose solution is

e0 11 -_ 2 • 0.16x2Ri)-1 (61)= 1---o0_N x RI(1 +

The last modilication we have to carry out accounts for corrections of higher orders in

(N2) n to the function am, Eq.(54d) where we took into account only the first correction

and thus a m has the form

am= 1-( (62a)

Since am>O. a consistent way to extrapolate (62a) to the regions where _~1 in the spirit of

Pade' approximations, we write

1-_ -_ (1+_) -1 (62b)

VI. Reynolds stresses, temperature and salinity fluxes

After performing the modifications indicated above, we obtain the following results:

Reynolds Stresses:

rij= uiu---j - _K_ij

rij = Caa + Ctt + CAA

where the basis tensors are defined in Eqs.(49b) and:

K s
C a = - 4 --/- SS m

In particular:

C t = 473 K2 rS2_ m

C A -8 3-_74 K2rN2S= T h

r = 2Ke -1

m 0U
uw = - K m ?Y,

_"_ = - K OV
m_--ff

(63a)

(63b)

(63c)

(63d)

(63e)

(63f)

(63g)
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Vertical Heat Flux J0:

K 2
K =2--S

m ( m

= K oT
J0 w--0--- h-_-Z

K 2
K h = 2 T Sh

(63h)

(64a)

(64b)

Vertical Salt Flux J •
a

= K 0S
Ja wa--- a_

K 2
K =2--S

(7 ( (7

Dimensionless Structure Function for Momentum:

where

Sm=_---SFfcam

pc =95_Fc=. 5 1125,,21---_,- "-]-6"- for x>15/8

_'c = 5 for x_<15/8

where the dimensionless variable x is given by

KS
(

The other dimensionless functions are:

-1= 1 + ( 0+ a)Fcl(7m

102r16 = 51_2F3x2Ri[1 + }21_tF_1(5+ 7Fffit) (1-0' 16x21_lRpai) ¢1 ]

102rJa = _ 5l_2F3X2RpRi[1 + }21_1F_1(5+ 7F2I_21)(1 +0.16x21_lRi) ¢1]

Furt hermore:

-1 = 1 + 0.16 l_lx2(1-Rp)Ri- 0.013 l_X4RpRi2¢¢1

¢-1 = 1+ 0.08 x2(1-Rp)Ri

Rp = (g s-O-_jig T_- )-

:1 ~ ~ 4: 1+_0-t- ~_m _-_am' am r/a

102_0 = 41_3F4x2Ri[1 + }21_2Fi1(5+ 7F31_31)(1-0.16x2I_2RpRi) ¢ 2]

(65a)

(65b)

(66a)

(66b)

(66c)

(66d)

(66e)

(66f)

(66g)

(66h)

(66i)

(67a)

(67b)

25



The functions 7's and Fn

=- 4P3F4x2RiRp[I+12P2Fi'(5+7F3Pi')(l+0.16x2p2Ri)_ 2]

¢-12= 1 + 0.16_2x2(1-Rp)Ri- 0.013_X4RpRi2O

aregivenby:

73=0.12FIF2, "_,4= 0.095F• 2

Fnl= 1 + 2 n(l+n).l(P_l)

l_nl= 1+ 1 n(I+n).I(P_I)

Dimensionless Structure Function for h emperature and Salinity:

Sh = 0.056p21(_1 - 0.08x2¢RiRp)_b 1

Sa = 0.056P21(P_l -t- 0.08x_¢Ri)W 1

(67c)

(67d)

(68a)

(68b)

(68c)

(68d)

(68e)

VII. Local and Non-Local Models

The above expressions require the knowledge of both the turbulent kinetic energy K

and of its rate of dissipation e. In principle, K and e satisfy the non-local dynamic

equations:

OK 0 F(K) + gaTJ -gasJ - _ (69a)_ + -0z = - rijSij 0 o

0e 0 F e) + - gasJa)]eK-1 - c e2K -1+ _z ( = [-carijSij ca(g°_TJ0 2

(69b)

The values of the coefficients c have been discussed at length by Burchard and Baumer_
1,2_3

(1995). F(K) and F(_) denote the fluxes of K and _ and they are third-order moments. The

most complete expressions for these third-order moments (TOM) are those given by

Canuto et al. (1994) which were successfully tested in the PBL (planetary boundary layer)

against results from LES (large eddy simulation). Use of these TOM, together with the

above model for the diffusivities, would represent a very complete treatment of ocean

mixed layer turbulence. It is the K-e model widely used in engineering turbulent flows.

Here, we present numerical results for the local limits of (69a,b) which we can write as

- rijSij + gaJ 0 = e (69c)

c = K3/2A -1 (69d)
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where A is a mixing length. The first equation has the simple physical interpretation of

production=dissipation, while (69d) is a statement of Kolmogorov law. Using the above

expressions for rij and J0' Eq.(69c) becomes the equation for the dimensionless variable x

defined in Eq.(66c). We obtain:

x _ = _(S m - RiSh)-I (69e)

where both Sm. h depend on x. The Richardson number Ri is defined in Eq.(44f). For a

given Ri, x is thus uniquely determined, x=x(Ri) aad so are the structure functions

Sm, h = Sm,h(Ri) (69f)

If we use the other local relation (69d), we finally obtain

Km,h = 2A2Sx-ISm, h (69g)

which yields the turbulent diffusivities in units of A2S. Finally, we note in the

production=dissipation local case, there is further simplification:

F =P =1 (69h)
1,2,3,4 1,2,3

We must stress, however, that the use of a local model is not required by the turbulence

model we have presented being made here only for reasons of simplicity. The length scale A

is determined using the Deardorff-Blackadar formula:

A = 2-3/2B g, B =24.7,
1 1

_= min(½Nq,, gl) (69i)

g = _;Zgo(g0+_z)-I g = 0.17H (69j)1 ' 0

where _q2=K is the turbulent kinetic energy, N is the Brunt-Vaisala frequency, _;=0.4 is

the von Karman constant and H is the mixed layer depth. When used within the NCAR

CSM Ocean Model, H is determined as the depth where the buoyancy difference

g[p(H)-p(surface)lp(H)-l= 3 10-4ms -2 (69k)

VIII. Ocean GCM

We tested the new vertical diffusivities in a global ocean general circulation model,

O-GCM. We used the NCAR CSM Ocean Model produced by the University Corporation
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for Research.National Center for Atmospheric Research,Climate and Global Dynamics

Division. They developedtheir modelby modifying the MOM 1.1 GFDL codeas described

in the NCAR CSM OceanModel TechnicalNote, "The NCAR CSM OceanModel", by the

NCAR Oceanographysection. We employed the stand-alone 3°x3° configuration of the

model detailed in their technicalnote with the default parametervalues. It has3.6ospacing

in longitudeand a variable spacingin latitude increasingfrom 1.8° at the equator to 3.40at

17o N_S and then decreasingback to 1.80for 60o N, S and polee,ard. There are25 levelsof

increasingthicknessin the vertical, with the surfacelevel6 metersthick. The option for the

GM mesoscaleeddy parameterizationwasenabled.Bulk forcing with a seasonalcycle plus

a 1/2 year timescalerestoring condition on the salinity is used,exceptunder sea-icewhere

there is strong restoring. This configurationcorrespondsto the caseB-K describedin Large

et al. (1997). It should be noted, however, that for determination of the length scale in our

turbulence model we used the program's definition for mixed layer depth (a buoyancy

difference from the surface of 3 10-4ms-2), which is different from that graphed as a

diagnostic in Fig.5 of Large et a1.(1997). We initialized our runs with annually averaged

Levitus data and ran for 126 momentum years. As in Large et al. (1997) a 3504sec timestep

for momentum is used, while for the first 96 momentum years the tracers are accelerated

by a factor increasing from 10 at the surface to 100 for the deep ocean. We then set all

timesteps equal for the remaining 30 years as they did.

First, we ran the NCAR program as is, with the option for the KPP mixing enabled,

producing the KPP data presented in the figures below. Then, in place of the KPP module,

we inserted a module which uses our new model for the diffusivities for momentum and

heat with the salt diffusivity set equal to that of heat. To save computing time, we

constructed tables of the dimensionless functions Sm, h and of the dimensionless variable y

(obtained from solving Eq.69e),

s 2t - (70a)Y = }--K- = Ix_ 2
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vs. Ri. Then, for eachpoint in spaceand time thesewere interpolated to the local Ri. To

construct the diffusivities Km,h(model), we usedthe results (63h) and (64b) which can be

rewritten in terms of (70a) as

= _Bly-_Sm,h (705)Km,h/teS

IX. Belowthe Mixed Layer

Below the ocean mixed layer, the external wind-generated shear i_ too small to

generateturbulent mixing and yet, even in regionswhere both the temperature and the

salinity gradientsare stably stratified, it is usual to assume"background diffusivities" for

viscosity, heat and salt diffusivity which are believed to be caused by internal wave

breaking (Large et al., 1997). It would be preferable not to do so but rather model the

physical processescausing this background mixing. Our main assumption is that the

turbulence model hasgiven us the correct functional dependenceof the Km,h,s on Ri and

R and that such diffusivities can thus be used below the ML. Since all the arguments
P

discussed below, are valid for any of the three K's, we shall use only the generic symbol K

and write succinctly

K = K(Ri,Rp) (71a)

The key problem is bow to define and thus compute Ri. Here, we shall make us of the

measured data (Gargett et al., 1981) on the vertical shear generated by the wave breaking

phenomenon. By integrating over all wavenumbers one can compute the shear due to

internal waves, Swb.

where

One can then form a corresponding Riwb as follows:

N2/S 2Riwb= / wb (71b)

N 2 = _ gp-l_ (71c)

Gargett et. al. (1981, sec. 5) confirmed earlier arguments by Munk (1966) that Riwb~l. To

those argument, we would like to add the following consideration. As the value of Ricr,

above which there is no longer turbulent mixing, computed from our model is O(1), if Riwb
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were >>1, there would be no turbulence generatedby the internal wavesat all. On the

other hand if Riwb were <<1, there would be a very strong turbulence producing a

viscosity sufficient to damp out the waves themselves.The wave-generated turbulence is

thus self-limiting. Since the turbulence model gives a precise value for Ricr, while the

above argument only tells us that Riwb~O(1), we shall write:

Riwb=CRicr (71d)

where c is a constant reasonably close to unity. We have found that c=0.88 gives a

diffusivity close that measured by Ledwell et al. (1993). Since in the local model, the K's

are also proportional to the length scale h or g, see Eq.(69i,j). Below the mixed layer, we

thus need an analogous gwb" We shall use the same formal expressions (69i,j) but with

different g (wb) which we compute as follows. Assuming a Kolmogorov spectrum at
0

wavenumbers upward of a breakpoint k and integrating, we obtain:
0

g (wb)= (3Ko)3/2(Blk0)-1 (71e)
0

where Ko=l.6 is the Kolmogorov constant. We identify k with the best value of Gargetto

et al. (1981) for the break in slope of the observed spectrum of internal waves, namely

k = 1 2r radians/meter (71f)o 0

Thus, go(wb) is known and so is _wb" Similarly, Ywb is obtained by solving the

production=dissipation, Eq.(69c). Thus, the complete wave-breaking expressions for the

three diffusivities are:

Km,h,s(Wb) = _BlgZ(wb)S bYwb Sm,h,s(Riwb, Rp) (72a)

We add together the diffusivities calculated using the shear resolved in the ocean model

and the background diffusivities, ensuring continuity in the transition between regions

where external excited shear dominates and those where the internal wave shear does. We

thus take the total diffusivities to be:

Km.h,s = Km,h,s(Ri,Rp) + Km,h,s(wb, Rp) (72b)

In the statically unstable case (Ri< 0), we set Km,h,s(Wb)=0. The very large mixing due

to convective instability makes the background irrelevant in this situation in any case.
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X. O--GCM results

In Fig.1 we present the dimensionless structure functions Sin, h vs.Ri. They are given

by Eqs.(66a) and (68d). The graphs correspond to the case without salinity. In Fig.2 we

present the ratio Km/K h (again for the case without salinity) versus the LES data (dots) of

Wang et al. (1996). In Figs.3-8 we present various diffusivities and their ratios for the full

case with salinity and shear. The latter is represented by Ri, defined as the ratio of N 2,

Eq.(50h) and the shear squared. The numbers on the curves represent the Turner number

Rp, defined in Eq.(66i). The nomenclature SF, DC, DS and DU was introduced and

discussed in the Introduction.

In Figs.9-20 we present the results of the O-GCM which comprise both global

temperature and salinity profiles as well as for the case of different ocean basins. In

Figs.21-29 we present the diffusivities in different ocean basins. Particularly interesting is

the case of the Canary Islands since one can compare the model results with the value of

0.11+0.02cm2s -_ measured by Ledwell et al. (1993). In each case, we compare our results

with Levitus data as well as with the results we have obtained by running the same code

with the KPP model which is available only for the case Ks=K h.

Finally, in Fig.30 we present the polar heat transport.

XI. Discussion

It seems natural to require that the reliability of a model used to describe a given

phenomenon should precede rather than follow the application of the model. Stated

somewhat differently, a model should be judged on more than its performance in a given

instance. Regrettably, the 1-point closure models used thus far to treat vertical mixing and

following the Mellor-Yarnada seminal work, have suffered and still do, from the presence of

several adjustable parameters which have not allowed a clear appraisal of their performance

before their use in the ocean context. In that respect, the new 2-point model presented here

is quite different for it is being used only after it has exhibited a pedigree based on its
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performanceon a wide variety of turbulent flows. Its credibility, manageability and

resiliencymakesthe best candidatefor the computationof the vertical diffusivities.

The work is however not complete. In fact, it is known that double-diffusion

phenomenachangea smooth gradient into one that exhibit a step-like structure. As of

today no theory that we know of is capable of encompassing such phenomenon. It is a

challenge that we shall undertake in future work.
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Figure caption

vs. Ri for different values of the Turner number RpFig.1 The momentum diffusivity K m

The label DC and SF are defined in the Introduction.

Fig.2 Same as in Fig.1 for the DU and DS cases.

Fig.3. Heat diffusivity vs. Ri for different Rp for the DC and SF cases.

Fig.4 Same as in Fig.3 for the DU and DS cases.

Fig.5 Salt diffusivity K s vs. Ri for the SF and DC cases

Fig.6 Same as in Fig.5 for the DU and DS cases

Fig.7 The turbulent Prandtl number Km/K h vs. Ri for different Rp. The heavy line

corresponds to the case of laboratory (see paper I, Figs. 3-4). Cases DC and SF.

Fig.8. The ratio of Km/K h vs. Ri for different Rp. Cases DU and DS.

Fig.9 The ratio of Km/K s vs. Ri for different Rp. DC and SF cases.

Fig.10 The ratio of Km/K s vs. Ri for different Rp. DU and DS cases.

Fig.ll The ratio of Kh/K s vs. Ri for different Rp. DC and SF cases.

Fig.12 The ratio of Kh/K s vs. Ri for different Rp. DU and DS cases.

Fig.13 The efficiency ratio F (paper II, Eq.59f) vs. Ri for different Rp. DC and SF cases

Fig.14 The global ocean temperature using the O-GCM discussed in VIII-IX with

the new diffusivities. The Levitus (1994) data are the solid line. We have also run the

O-GCM code with the KPP model (Ks=Kh) and the results are indicated by

diamonds. The results with our new 1-point closure model with Ks=K h (paper II) are

shown by squares while the present model results with Ks#K h are indicated by

asterisks.

Fig.15. Global salinity

Fig. 16. Attic ocean temperature

Fig.17. Artic ocean salinity

Fig. 18. Atlantic ocean temperature

Fig.19. Attic ocean salinity
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Fig.20.Pacificoceantemperature

Fig.21.Pacific ocean salinity

Fig.22. Indian ocean temperature

Fig.23.Indian ocean salinity

Southern ocean temperature

Southern ocean salinity

The four diffusivities K
m,h,s,p

Fig.24.

Fig.25.

Fig.26.

Fig.27

Fig.28

Fig.29

(cm2s -1) for the Papa station

The four diffusivities Km,h,s, p (cm2s -1) for the Artic ocean

The four diffusivities Km,h,s, p (cm2s -1) for the Canary Islands.

Same as in Fig.26 but for the first lkm

Fig.30. Same as in Fig.27 for the first lkm

Fig.31 Same as in Fig.28 for the first lkm. Ledwell et al. (1993) value of 0.11+0.02 cm2s -1

(see, however, the discussion in the main text)

Fig.32. Same as in Fig.26 for the first 40m

Fig.28 Same as in Fig.22 for the first 40m

Fig.29 Same as in Fig.23 for the first 60m.

Fig.30 Polar heat transport vs. latitude for three different models.
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